A Quantum Query Complexity Trichotomy for Regular Languages
We present a trichotomy theorem for the quantum query complexity of regular languages. Every regular language has quantum query complexity Theta(1), Theta(sqrt n), or Theta(n). The extreme uniformity of regular languages prevents them from taking any other asymptotic complexity. This is in contrast to even the context-free languages, which we show can have query complexity Theta(n^c) for all computable c in [1/2,1]. Our result implies an equivalent trichotomy for the approximate degree of regular languages, and a dichotomy--either Theta(1) or Theta(n)--for sensitivity, block sensitivity, certificate complexity, deterministic query complexity, and randomized query complexity. The heart of the classification theorem is an explicit quantum algorithm which decides membership in any star-free language in O(sqrt n) time. This well-studied family of the regular languages admits many interesting characterizations, for instance, as those languages expressible as sentences in first-order logic over the natural numbers with the less-than relation. Therefore, not only do the star-free languages capture functions such as OR, they can also express functions such as "there exist a pair of 2's such that everything between them is a 0." Thus, we view the algorithm for star-free languages as a nontrivial generalization of Grover's algorithm which extends the quantum quadratic speedup to a much wider range of string-processing algorithms than was previously known. We show applications to problems such as evaluating dynamic constant-depth Boolean formulas and recognizing balanced parentheses nested constantly many levels deep.
READ FULL TEXT