A robust scalar-on-function logistic regression for classification

04/05/2022
by   Muge Mutis, et al.
0

Scalar-on-function logistic regression, where the response is a binary outcome and the predictor consists of random curves, has become a general framework to explore a linear relationship between the binary outcome and functional predictor. Most of the methods used to estimate this model are based on the least-squares type estimators. However, the least-squares estimator is seriously hindered by outliers, leading to biased parameter estimates and an increased probability of misclassification. This paper proposes a robust partial least squares method to estimate the regression coefficient function in the scalar-on-function logistic regression. The regression coefficient function represented by functional partial least squares decomposition is estimated by a weighted likelihood method, which downweighs the effect of outliers in the response and predictor. The estimation and classification performance of the proposed method is evaluated via a series of Monte Carlo experiments and a strawberry puree data set. The results obtained from the proposed method are compared favorably with existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset