A Scalable Bayesian Persuasion Framework for Epidemic Containment on Heterogeneous Networks

07/23/2022
by   Shraddha Pathak, et al.
0

During an epidemic, the information available to individuals in the society deeply influences their belief of the epidemic spread, and consequently the preventive measures they take to stay safe from the infection. In this paper, we develop a scalable framework for ascertaining the optimal information disclosure a government must make to individuals in a networked society for the purpose of epidemic containment. This problem of information design problem is complicated by the heterogeneous nature of the society, the positive externalities faced by individuals, and the variety in the public response to such disclosures. We use a networked public goods model to capture the underlying societal structure. Our first main result is a structural decomposition of the government's objectives into two independent components – a component dependent on the utility function of individuals, and another dependent on properties of the underlying network. Since the network dependent term in this decomposition is unaffected by the signals sent by the government, this characterization simplifies the problem of finding the optimal information disclosure policies. We find explicit conditions, in terms of the risk aversion and prudence, under which no disclosure, full disclosure, exaggeration and downplay are the optimal policies. The structural decomposition results are also helpful in studying other forms of interventions like incentive design and network design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset