A Scalable Empirical Bayes Approach to Variable Selection in Generalized Linear Models

03/26/2018
by   Haim Bar, et al.
0

A new empirical Bayes approach to variable selection in the context of generalized linear models is developed. The proposed algorithm scales to situations in which the number of putative explanatory variables is very large, possibly much larger than the number of responses. The coefficients in the linear predictor are modeled as a three-component mixture allowing the explanatory variables to have a random positive effect on the response, a random negative effect, or no effect. A key assumption is that only a small (but unknown) fraction of the candidate variables have a non-zero effect. This assumption, in addition to treating the coefficients as random effects facilitates an approach that is computationally efficient. In particular, the number of parameters that have to be estimated is small, and remains constant regardless of the number of explanatory variables. The model parameters are estimated using a modified form of the EM algorithm which is scalable, and leads to significantly faster convergence compared with simulation-based fully Bayesian methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset