A semantics-driven methodology for high-quality image annotation
Recent work in Machine Learning and Computer Vision has highlighted the presence of various types of systematic flaws inside ground truth object recognition benchmark datasets. Our basic tenet is that these flaws are rooted in the many-to-many mappings which exist between the visual information encoded in images and the intended semantics of the labels annotating them. The net consequence is that the current annotation process is largely under-specified, thus leaving too much freedom to the subjective judgment of annotators. In this paper, we propose vTelos, an integrated Natural Language Processing, Knowledge Representation, and Computer Vision methodology whose main goal is to make explicit the (otherwise implicit) intended annotation semantics, thus minimizing the number and role of subjective choices. A key element of vTelos is the exploitation of the WordNet lexico-semantic hierarchy as the main means for providing the meaning of natural language labels and, as a consequence, for driving the annotation of images based on the objects and the visual properties they depict. The methodology is validated on images populating a subset of the ImageNet hierarchy.
READ FULL TEXT