A Semi-implicit Finite Volume Scheme for Dissipative Measure-valued Solutions to the Barotropic Euler System

06/19/2023
by   K. R. Arun, et al.
0

A semi-implicit in time, entropy stable finite volume scheme for the compressible barotropic Euler system is designed and analyzed and its weak convergence to a dissipative measure-valued (DMV) solution [E. Feireisl et al., Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 2016] of the Euler system is shown. The entropy stability is achieved by introducing a shifted velocity in the convective fluxes of the mass and momentum balances, provided some CFL-like condition is satisfied to ensure stability. A consistency analysis is performed in the spirit of the Lax's equivalence theorem under some physically reasonable boundedness assumptions. The concept of K-convergence [E. Feireisl et al., K-convergence as a new tool in numerical analysis, IMA J. Numer. Anal., 2020] is used in order to obtain some strong convergence results, which are then illustrated via rigorous numerical case studies. The convergence of the scheme to a DMV solution, a weak solution and a strong solution of the Euler system using the weak-strong uniqueness principle and relative entropy are presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro