A Simple but Hard-to-Beat Baseline for Session-based Recommendations

08/15/2018
by   Fajie Yuan, et al.
0

Convolutional Neural Networks (CNNs) models have been recently introduced in the domain of top-N session-based recommendations. An ordered collection of past items the user has interacted with in a session (or sequence) are embedded into a 2-dimensional latent matrix, and treated as an image. The convolution and pooling operations are then applied to the mapped item embeddings. In this paper, we first examine the typical session-based CNN recommender and show that both the generative model and network architecture are suboptimal when modeling long-range dependencies in the item sequence. To address the issues, we propose a simple, but very effective generative model that is capable of learning high-level representation from both short- and long-range dependencies. The network architecture of the proposed model is formed of a stack of holed convolutional layers, which can efficiently increase the receptive fields without relying on the pooling operation. Another contribution is the effective use of residual block structure in recommender systems, which not only reduces the number of parameters but also eases the optimization for much deeper networks. The proposed generative model attains state-of-the-art accuracy with less training time in the session-based recommendation task. It accordingly can be used as a powerful session-based recommendation baseline to beat in future, especially when there are long sequences of user feedback.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset