A spatial small-world graph arising from activity-based reinforcement

04/03/2019
by   Markus Heydenreich, et al.
0

In the classical preferential attachment model, links form instantly to newly arriving nodes and do not change over time. We propose a hierarchical random graph model in a spatial setting, where such a time-variability arises from an activity-based reinforcement mechanism. We show that the reinforcement mechanism converges, and prove rigorously that the resulting random graph exhibits the small-world property. A further motivation for this random graph stems from modeling synaptic plasticity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro