A Stochastic Variance Reduced Nesterov's Accelerated Quasi-Newton Method

10/17/2019
by   Sota Yasuda, et al.
0

Recently algorithms incorporating second order curvature information have become popular in training neural networks. The Nesterov's Accelerated Quasi-Newton (NAQ) method has shown to effectively accelerate the BFGS quasi-Newton method by incorporating the momentum term and Nesterov's accelerated gradient vector. A stochastic version of NAQ method was proposed for training of large-scale problems. However, this method incurs high stochastic variance noise. This paper proposes a stochastic variance reduced Nesterov's Accelerated Quasi-Newton method in full (SVR-NAQ) and limited (SVRLNAQ) memory forms. The performance of the proposed method is evaluated in Tensorflow on four benchmark problems - two regression and two classification problems respectively. The results show improved performance compared to conventional methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro