A Strong Baseline for Weekly Time Series Forecasting
Many businesses and industries require accurate forecasts for weekly time series nowadays. The forecasting literature however does not currently provide easy-to-use, automatic, reproducible and accurate approaches dedicated to this task. We propose a forecasting method that can be used as a strong baseline in this domain, leveraging state-of-the-art forecasting techniques, forecast combination, and global modelling. Our approach uses four base forecasting models specifically suitable for forecasting weekly data: a global Recurrent Neural Network model, Theta, Trigonometric Box-Cox ARMA Trend Seasonal (TBATS), and Dynamic Harmonic Regression ARIMA (DHR-ARIMA). Those are then optimally combined using a lasso regression stacking approach. We evaluate the performance of our method against a set of state-of-the-art weekly forecasting models on six datasets. Across four evaluation metrics, we show that our method consistently outperforms the benchmark methods by a considerable margin with statistical significance. In particular, our model can produce the most accurate forecasts, in terms of mean sMAPE, for the M4 weekly dataset.
READ FULL TEXT