A Structural and Algorithmic Study of Stable Matching Lattices of Multiple Instances
Recently MV18a identified and initiated work on the new problem of understanding structural relationships between the lattices of solutions of two “nearby” instances of stable matching. They also gave an application of their work to finding a robust stable matching. However, the types of changes they allowed in going from instance A to B were very restricted, namely, any one agent executes an upward shift. In this paper, we allow any one agent to permute its preference list arbitrarily. Let M_A and M_B be the sets of stable matchings of the resulting pair of instances A and B, and let ℒ_A and ℒ_B be the corresponding lattices of stable matchings. We prove that the matchings in M_A ∩ M_B form a sublattice of both ℒ_A and ℒ_B and those in M_A ∖ M_B form a join semi-sublattice of ℒ_A. These properties enable us to obtain a polynomial time algorithm for not only finding a stable matching in M_A ∩ M_B, but also for obtaining the partial order, as promised by Birkhoff's Representation Theorem, thereby enabling us to generate all matchings in this sublattice. Our algorithm also helps solve a version of the robust stable matching problem. We discuss another potential application, namely obtaining new insights into the incentive compatibility properties of the Gale-Shapley Deferred Acceptance Algorithm.
READ FULL TEXT