A Study of a Genetic Algorithm for Polydisperse Spray Flames

08/11/2020
by   Daniel Engelsman, et al.
0

Modern technological advancements constantly push forward the human-machine interaction. Evolutionary Algorithms (EA) are an machine learning (ML) subclass inspired by the process of natural selection - Survival of the Fittest, as stated by the Darwinian Theory of Evolution. The most notable algorithm in that class is the Genetic Algorithm (GA) - a powerful heuristic tool which enables the generation of a high-quality solutions to optimization problems. In recent decades the algorithm underwent remarkable improvement, which adapted it into a wide range of engineering problems, by heuristically searching for the optimal solution. Despite being well-defined, many engineering problems may suffer from heavy analytical entanglement when approaching the derivation process, as required in classic optimization methods. Therefore, the main motivation here, is to work around that obstacle. In this piece of work, I would like to harness the GA capabilities to examine optimality with respect to a unique combustion problem, in a way that was never performed before. To be more precise, I would like to utilize it to answer the question : What form of an initial droplet size distribution (iDSD) will guarantee an optimal flame ? To answer this question, I will first provide a general introduction to the GA method, then develop the combustion model, and eventually merge both into an optimization problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset