A survey of automatic de-identification of longitudinal clinical narratives
Use of medical data, also known as electronic health records, in research helps develop and advance medical science. However, protecting patient confidentiality and identity while using medical data for analysis is crucial. Medical data can be in the form of tabular structures (i.e. tables), free-form narratives, and images. This study focuses on medical data in the free form longitudinal text. De-identification of electronic health records provides the opportunity to use such data for research without it affecting patient privacy, and avoids the need for individual patient consent. In recent years there is increasing interest in developing an accurate, robust and adaptable automatic de-identification system for electronic health records. This is mainly due to the dilemma between the availability of an abundance of health data, and the inability to use such data in research due to legal and ethical restrictions. De-identification tracks in competitions such as the 2014 i2b2 UTHealth and the 2016 CEGS N-GRID shared tasks have provided a great platform to advance this area. The primary reasons for this include the open source nature of the dataset and the fact that raw psychiatric data were used for 2016 competitions. This study focuses on noticeable trend changes in the techniques used in the development of automatic de-identification for longitudinal clinical narratives. More specifically, the shift from using conditional random fields (CRF) based systems only or rules (regular expressions, dictionary or combinations) based systems only, to hybrid models (combining CRF and rules), and more recently to deep learning based systems. We review the literature and results that arose from the 2014 and the 2016 competitions and discuss the outcomes of these systems. We also provide a list of research questions that emerged from this survey.
READ FULL TEXT