A Survey of Deep Learning: From Activations to Transformers
Deep learning has made tremendous progress in the last decade. A key success factor is the large amount of architectures, layers, objectives, and optimization techniques that have emerged in recent years. They include a myriad of variants related to attention, normalization, skip connection, transformer and self-supervised learning schemes – to name a few. We provide a comprehensive overview of the most important, recent works in these areas to those who already have a basic understanding of deep learning. We hope that a holistic and unified treatment of influential, recent works helps researchers to form new connections between diverse areas of deep learning.
READ FULL TEXT