A Survey of Resource Management for Processing-in-Memory and Near-Memory Processing Architectures

09/21/2020
by   Kamil Khan, et al.
0

Due to amount of data involved in emerging deep learning and big data applications, operations related to data movement have quickly become the bottleneck. Data-centric computing (DCC), as enabled by processing-in-memory (PIM) and near-memory processing (NMP) paradigms, aims to accelerate these types of applications by moving the computation closer to the data. Over the past few years, researchers have proposed various memory architectures that enable DCC systems, such as logic layers in 3D stacked memories or charge sharing based bitwise operations in DRAM. However, application-specific memory access patterns, power and thermal concerns, memory technology limitations, and inconsistent performance gains complicate the offloading of computation in DCC systems. Therefore, designing intelligent resource management techniques for computation offloading is vital for leveraging the potential offered by this new paradigm. In this article, we survey the major trends in managing PIM and NMP-based DCC systems and provide a review of the landscape of resource management techniques employed by system designers for such systems. Additionally, we discuss the future challenges and opportunities in DCC management.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset