A Survey on Graph Classification and Link Prediction based on GNN
Traditional convolutional neural networks are limited to handling Euclidean space data, overlooking the vast realm of real-life scenarios represented as graph data, including transportation networks, social networks, and reference networks. The pivotal step in transferring convolutional neural networks to graph data analysis and processing lies in the construction of graph convolutional operators and graph pooling operators. This comprehensive review article delves into the world of graph convolutional neural networks. Firstly, it elaborates on the fundamentals of graph convolutional neural networks. Subsequently, it elucidates the graph neural network models based on attention mechanisms and autoencoders, summarizing their application in node classification, graph classification, and link prediction along with the associated datasets.
READ FULL TEXT