A theory of finite structures

08/15/2018
by   Daniel Leivant, et al.
0

We develop a novel formal theory of finite structures, based on a view of finite structures as a fundamental artifact of computing and programming, forming a common platform for computing both within particular finite structures, and in the aggregate for computing over infinite data-types construed as families of finite structures. A "finite structure" is here a finite collection of finite partial-functions, over a common universe of atoms. The theory is second-order, as it uses quantification over finite functions. Our formal theory FS uses a small number of fundamental axiom-schemas, with finiteness enforced by a schema of induction on finite partial-functions. We show that computability is definable in the theory by existential formulas, generalizing Kleene's Theorem on the Sigma-1 definability of RE sets, and use that result to prove that FS is mutually interpretable with Peano Arithmetic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset