A time-domain preconditioner for the Helmholtz equation

06/30/2020
by   Christiaan C. Stolk, et al.
0

Time-harmonic solutions to the wave equation can be computed in the frequency or in the time domain. In the frequency domain, one solves a discretized Helmholtz equation, while in the time domain, the periodic solutions to a discretized wave equation are sought, e.g. by simulating for a long time with a time-harmonic forcing term. Disadvantages of the time-domain method are that the solutions are affected by temporal discretization errors and that the spatial discretization cannot be freely chosen, since it is inherited from the time-domain scheme. In this work we address these issues. Given an indefinite linear system satisfying certain properties, a matrix recurrence relation is constructed, such that in the limit the exact discrete solution is obtained. By iterating a large, finite number of times, an approximate solution is obtained, similarly as in a time-domain method for the Helmholtz equation. To improve the convergence, the process is used as a preconditioner for GMRES, and the time-harmonic forcing term is multiplied by a smooth window function. The construction is applied to a compact-stencil finite-difference discretization of the Helmholtz equation, for which previously no time-domain solver was available. Advantages of the resulting solver are the relative simplicity, small memory requirement and reasonable computation times.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset