A Transformer-based Generative Adversarial Network for Brain Tumor Segmentation

07/28/2022
by   Liqun Huang, et al.
0

Brain tumor segmentation remains a challenge in medical image segmentation tasks. With the application of transformer in various computer vision tasks, transformer blocks show the capability of learning long-distance dependency in global space, which is complementary with CNNs. In this paper, we proposed a novel transformer-based generative adversarial network to automatically segment brain tumors with multi-modalities MRI. Our architecture consists of a generator and a discriminator, which are trained in min-max game progress. The generator is based on a typical "U-shaped" encoder-decoder architecture, whose bottom layer is composed of transformer blocks with resnet. Besides, the generator is trained with deep supervision technology. The discriminator we designed is a CNN-based network with multi-scale L_1 loss, which is proved to be effective for medical semantic image segmentation. To validate the effectiveness of our method, we conducted experiments on BRATS2015 dataset, achieving comparable or better performance than previous state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset