A Two-Stream Siamese Neural Network for Vehicle Re-Identification by Using Non-Overlapping Cameras

02/04/2019
by   Icaro O. de Oliveira, et al.
0

We describe in this paper a novel Two-Stream Siamese Neural Network for vehicle re-identification. The proposed network is fed simultaneously with small coarse patches of the vehicle shape's, with 96 x 96 pixels, in one stream, and fine features extracted from license plate patches, easily readable by humans, with 96 x 48 pixels, in the other one. Then, we combined the strengths of both streams by merging the Siamese distance descriptors with a sequence of fully connected layers, as an attempt to tackle a major problem in the field, false alarms caused by a huge number of car design and models with nearly the same appearance or by similar license plate strings. In our experiments, with 2 hours of videos containing 2982 vehicles, extracted from two low-cost cameras in the same roadway, 546 ft away, we achieved a F-measure and accuracy of 92.6 network, available at https://github.com/icarofua/siamese-two-stream, outperforms other One-Stream architectures, even if they use higher resolution image features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro