A verified algebraic representation of Cairo program execution
Cryptographic interactive proof systems provide an efficient and scalable means of verifying the results of computation on blockchain. A prover constructs a proof, off-chain, that the execution of a program on a given input terminates with a certain result. The prover then publishes a certificate that can be verified efficiently and reliably modulo commonly accepted cryptographic assumptions. The method relies on an algebraic encoding of execution traces of programs. Here we report on a verification of the correctness of such an encoding of the Cairo model of computation with respect to the STARK interactive proof system, using the Lean 3 proof assistant.
READ FULL TEXT