ABS: Adaptive Bounded Staleness Converges Faster and Communicates Less

01/21/2023
by   Qiao Tan, et al.
0

Wall-clock convergence time and communication rounds are critical performance metrics in distributed learning with parameter-server setting. While synchronous methods converge fast but are not robust to stragglers; and asynchronous ones can reduce the wall-clock time per round but suffers from degraded convergence rate due to the staleness of gradients, it is natural to combine the two methods to achieve a balance. In this work, we develop a novel asynchronous strategy that leverages the advantages of both synchronous methods and asynchronous ones, named adaptive bounded staleness (ABS). The key enablers of ABS are two-fold. First, the number of workers that the PS waits for per round for gradient aggregation is adaptively selected to strike a straggling-staleness balance. Second, the workers with relatively high staleness are required to start a new round of computation to alleviate the negative effect of staleness. Simulation results are provided to demonstrate the superiority of ABS over state-of-the-art schemes in terms of wall-clock time and communication rounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro