Academic Performance Estimation with Attention-based Graph Convolutional Networks
Student's academic performance prediction empowers educational technologies including academic trajectory and degree planning, course recommender systems, early warning and advising systems. Given a student's past data (such as grades in prior courses), the task of student's performance prediction is to predict a student's grades in future courses. Academic programs are structured in a way that prior courses lay the foundation for future courses. The knowledge required by courses is obtained by taking multiple prior courses, which exhibits complex relationships modeled by graph structures. Traditional methods for student's performance prediction usually neglect the underlying relationships between multiple courses; and how students acquire knowledge across them. In addition, traditional methods do not provide interpretation for predictions needed for decision making. In this work, we propose a novel attention-based graph convolutional networks model for student's performance prediction. We conduct extensive experiments on a real-world dataset obtained from a large public university. The experimental results show that our proposed model outperforms state-of-the-art approaches in terms of grade prediction. The proposed model also shows strong accuracy in identifying students who are at-risk of failing or dropping out so that timely intervention and feedback can be provided to the student.
READ FULL TEXT