Accelerating Deep Unrolling Networks via Dimensionality Reduction
In this work we propose a new paradigm for designing efficient deep unrolling networks using dimensionality reduction schemes, including minibatch gradient approximation and operator sketching. The deep unrolling networks are currently the state-of-the-art solutions for imaging inverse problems. However, for high-dimensional imaging tasks, especially X-ray CT and MRI imaging, the deep unrolling schemes typically become inefficient both in terms of memory and computation, due to the need of computing multiple times the high-dimensional forward and adjoint operators. Recently researchers have found that such limitations can be partially addressed by unrolling the stochastic gradient descent (SGD), inspired by the success of stochastic first-order optimization. In this work, we explore further this direction and propose first a more expressive and practical stochastic primal-dual unrolling, based on the state-of-the-art Learned Primal-Dual (LPD) network, and also a further acceleration upon stochastic primal-dual unrolling, using sketching techniques to approximate products in the high-dimensional image space. The operator sketching can be jointly applied with stochastic unrolling for the best acceleration and compression performance. Our numerical experiments on X-ray CT image reconstruction demonstrate the remarkable effectiveness of our accelerated unrolling schemes.
READ FULL TEXT