Accelerating Goal-Directed Reinforcement Learning by Model Characterization

01/04/2019
by   Shoubhik Debnath, et al.
34

We propose a hybrid approach aimed at improving the sample efficiency in goal-directed reinforcement learning. We do this via a two-step mechanism where firstly, we approximate a model from Model-Free reinforcement learning. Then, we leverage this approximate model along with a notion of reachability using Mean First Passage Times to perform Model-Based reinforcement learning. Built on such a novel observation, we design two new algorithms - Mean First Passage Time based Q-Learning (MFPT-Q) and Mean First Passage Time based DYNA (MFPT-DYNA), that have been fundamentally modified from the state-of-the-art reinforcement learning techniques. Preliminary results have shown that our hybrid approaches converge with much fewer iterations than their corresponding state-of-the-art counterparts and therefore requiring much fewer samples and much fewer training trials to converge.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset