Accurate Nuclear Segmentation with Center Vector Encoding

07/09/2019
by   Jiahui Li, et al.
3

Nuclear segmentation is important and frequently demanded for pathology image analysis, yet is also challenging due to nuclear crowdedness and possible occlusion. In this paper, we present a novel bottom-up method for nuclear segmentation. The concepts of Center Mask and Center Vector are introduced to better depict the relationship between pixels and nuclear instances. The instance differentiation process are thus largely simplified and easier to understand. Experiments demonstrate the effectiveness of Center Vector Encoding, where our method outperforms state-of-the-arts by a clear margin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset