Achieving Throughput via Fine-Grained Path Planning in Small World DTNs
We explore the benefits of using fine-grained statistics in small world DTNs to achieve high throughput without the aid of external infrastructure. We first design an empirical node-pair inter-contacts model that predicts meetings within a time frame of suitable length, typically of the order of days, with a probability above some threshold, and can be readily computed with low overhead. This temporal knowledge enables effective time-dependent path planning that can be respond to even per-packet deadline variabilities. We describe one such routing framework, REAPER (for Reliable, Efficient and Predictive Routing), that is fully distributed and self-stabilizing. Its key objective is to provide probabilistic bounds on path length (cost) and delay in a temporally fine-grained way, while exploiting the small world structure to entail only polylogarithmic storage and control overhead. A simulation-based evaluation confirms that REAPER achieves high throughput and energy efficiency across the spectrum of ultra-light to heavy network traffic, and substantially outperforms state-of-the-art single copy protocols as well as sociability-based protocols that rely on essentially coarse-grained metrics.
READ FULL TEXT