Acoustic Word Embedding System for Code-Switching Query-by-example Spoken Term Detection

05/24/2020
by   Murong Ma, et al.
0

In this paper, we propose a deep convolutional neural network-based acoustic word embedding system on code-switching query by example spoken term detection. Different from previous configurations, we combine audio data in two languages for training instead of only using one single language. We transform the acoustic features of keyword templates and searching content to fixed-dimensional vectors and calculate the distances between keyword segments and searching content segments obtained in a sliding manner. An auxiliary variability-invariant loss is also applied to training data within the same word but different speakers. This strategy is used to prevent the extractor from encoding undesired speaker- or accent-related information into the acoustic word embeddings. Experimental results show that our proposed system produces promising searching results in the code-switching test scenario. With the increased number of templates and the employment of variability-invariant loss, the searching performance is further enhanced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset