Action State Update Approach to Dialogue Management

11/09/2020
by   Svetlana Stoyanchev, et al.
0

Utterance interpretation is one of the main functions of a dialogue manager, which is the key component of a dialogue system. We propose the action state update approach (ASU) for utterance interpretation, featuring a statistically trained binary classifier used to detect dialogue state update actions in the text of a user utterance. Our goal is to interpret referring expressions in user input without a domain-specific natural language understanding component. For training the model, we use active learning to automatically select simulated training examples. With both user-simulated and interactive human evaluations, we show that the ASU approach successfully interprets user utterances in a dialogue system, including those with referring expressions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset