Adaptive Fake Audio Detection with Low-Rank Model Squeezing

06/08/2023
by   Xiaohui Zhang, et al.
0

The rapid advancement of spoofing algorithms necessitates the development of robust detection methods capable of accurately identifying emerging fake audio. Traditional approaches, such as finetuning on new datasets containing these novel spoofing algorithms, are computationally intensive and pose a risk of impairing the acquired knowledge of known fake audio types. To address these challenges, this paper proposes an innovative approach that mitigates the limitations associated with finetuning. We introduce the concept of training low-rank adaptation matrices tailored specifically to the newly emerging fake audio types. During the inference stage, these adaptation matrices are combined with the existing model to generate the final prediction output. Extensive experimentation is conducted to evaluate the efficacy of the proposed method. The results demonstrate that our approach effectively preserves the prediction accuracy of the existing model for known fake audio types. Furthermore, our approach offers several advantages, including reduced storage memory requirements and lower equal error rates compared to conventional finetuning methods, particularly on specific spoofing algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset