Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems

11/05/2021
by   Roland Becker, et al.
0

We consider an elliptic linear-quadratic parameter estimation problem with a finite number of parameters. An adaptive finite element method driven by an a posteriori error estimator for the error in the parameters is presented. Unlike prior results in the literature, our estimator, which is composed of standard energy error residual estimators for the state equation and suitable co-state problems, reflects the faster convergence of the parameter error compared to the (co)-state variables. We show optimal convergence rates of our method; in particular and unlike prior works, we prove that the estimator decreases with a rate that is the sum of the best approximation rates of the state and co-state variables. Experiments confirm that our method matches the convergence rate of the parameter error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset