Adaptive Hyper-box Matching for Interpretable Individualized Treatment Effect Estimation

03/03/2020
by   Marco Morucci, et al.
0

We propose a matching method for observational data that matches units with others in unit-specific, hyper-box-shaped regions of the covariate space. These regions are large enough that many matches are created for each unit and small enough that the treatment effect is roughly constant throughout. The regions are found as either the solution to a mixed integer program, or using a (fast) approximation algorithm. The result is an interpretable and tailored estimate of a causal effect for each unit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset