Adaptive Regularization of B-Spline Models for Scientific Data

03/23/2022
by   David Lenz, et al.
0

B-spline models are a powerful way to represent scientific data sets with a functional approximation. However, these models can suffer from spurious oscillations when the data to be approximated are not uniformly distributed. Model regularization (i.e., smoothing) has traditionally been used to minimize these oscillations; unfortunately, it is sometimes impossible to sufficiently remove unwanted artifacts without smoothing away key features of the data set. In this article, we present a method of model regularization that preserves significant features of a data set while minimizing artificial oscillations. Our method varies the strength of a smoothing parameter throughout the domain automatically, removing artifacts in poorly-constrained regions while leaving other regions unchanged. The behavior of our method is validated on a collection of two- and three-dimensional data sets produced by scientific simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset