Adaptive Transfer Learning for Plant Phenotyping
Plant phenotyping (Guo et al. 2021; Pieruschka et al. 2019) focuses on studying the diverse traits of plants related to the plants' growth. To be more specific, by accurately measuring the plant's anatomical, ontogenetical, physiological and biochemical properties, it allows identifying the crucial factors of plants' growth in different environments. One commonly used approach is to predict the plant's traits using hyperspectral reflectance (Yendrek et al. 2017; Wang et al. 2021). However, the data distributions of the hyperspectral reflectance data in plant phenotyping might vary in different environments for different plants. That is, it would be computationally expansive to learn the machine learning models separately for one plant in different environments. To solve this problem, we focus on studying the knowledge transferability of modern machine learning models in plant phenotyping. More specifically, this work aims to answer the following questions. (1) How is the performance of conventional machine learning models, e.g., partial least squares regression (PLSR), Gaussian process regression (GPR) and multi-layer perceptron (MLP), affected by the number of annotated samples for plant phenotyping? (2) Whether could the neural network based transfer learning models improve the performance of plant phenotyping? (3) Could the neural network based transfer learning be improved by using infinite-width hidden layers for plant phenotyping?
READ FULL TEXT