Adding 3D Geometry Control to Diffusion Models
Diffusion models have emerged as a powerful method of generative modeling across a range of fields, capable of producing stunning photo-realistic images from natural language descriptions. However, these models lack explicit control over the 3D structure of the objects in the generated images. In this paper, we propose a novel method that incorporates 3D geometry control into diffusion models, making them generate even more realistic and diverse images. To achieve this, our method exploits ControlNet, which extends diffusion models by using visual prompts in addition to text prompts. We generate images of 3D objects taken from a 3D shape repository (e.g., ShapeNet and Objaverse), render them from a variety of poses and viewing directions, compute the edge maps of the rendered images, and use these edge maps as visual prompts to generate realistic images. With explicit 3D geometry control, we can easily change the 3D structures of the objects in the generated images and obtain ground-truth 3D annotations automatically. This allows us to use the generated images to improve a lot of vision tasks, e.g., classification and 3D pose estimation, in both in-distribution (ID) and out-of-distribution (OOD) settings. We demonstrate the effectiveness of our method through extensive experiments on ImageNet-50, ImageNet-R, PASCAL3D+, ObjectNet3D, and OOD-CV datasets. The results show that our method significantly outperforms existing methods across multiple benchmarks (e.g., 4.6 percentage points on ImageNet-50 using ViT and 3.5 percentage points on PASCAL3D+ and ObjectNet3D using NeMo).
READ FULL TEXT