ADS-Cap: A Framework for Accurate and Diverse Stylized Captioning with Unpaired Stylistic Corpora

08/02/2023
by   Kanzhi Cheng, et al.
0

Generating visually grounded image captions with specific linguistic styles using unpaired stylistic corpora is a challenging task, especially since we expect stylized captions with a wide variety of stylistic patterns. In this paper, we propose a novel framework to generate Accurate and Diverse Stylized Captions (ADS-Cap). Our ADS-Cap first uses a contrastive learning module to align the image and text features, which unifies paired factual and unpaired stylistic corpora during the training process. A conditional variational auto-encoder is then used to automatically memorize diverse stylistic patterns in latent space and enhance diversity through sampling. We also design a simple but effective recheck module to boost style accuracy by filtering style-specific captions. Experimental results on two widely used stylized image captioning datasets show that regarding consistency with the image, style accuracy and diversity, ADS-Cap achieves outstanding performances compared to various baselines. We finally conduct extensive analyses to understand the effectiveness of our method. Our code is available at https://github.com/njucckevin/ADS-Cap.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset