Advancement of Deep Learning in Pneumonia and Covid-19 Classification and Localization: A Qualitative and Quantitative Analysis
Around 450 million people are affected by pneumonia every year which results in 2.5 million deaths. Covid-19 has also affected 181 million people which has lead to 3.92 million casualties. The chances of death in both of these diseases can be significantly reduced if they are diagnosed early. However, the current methods of diagnosing pneumonia (complaints + chest X-ray) and covid-19 (RT-PCR) require the presence of expert radiologists and time, respectively. With the help of Deep Learning models, pneumonia and covid-19 can be detected instantly from Chest X-rays or CT scans. This way, the process of diagnosing Pneumonia/Covid-19 can be made more efficient and widespread. In this paper, we aim to elicit, explain, and evaluate, qualitatively and quantitatively, major advancements in deep learning methods aimed at detecting or localizing community-acquired pneumonia (CAP), viral pneumonia, and covid-19 from images of chest X-rays and CT scans. Being a systematic review, the focus of this paper lies in explaining deep learning model architectures which have either been modified or created from scratch for the task at hand wiwth focus on generalizability. For each model, this paper answers the question of why the model is designed the way it is, the challenges that a particular model overcomes, and the tradeoffs that come with modifying a model to the required specifications. A quantitative analysis of all models described in the paper is also provided to quantify the effectiveness of different models with a similar goal. Some tradeoffs cannot be quantified, and hence they are mentioned explicitly in the qualitative analysis, which is done throughout the paper. By compiling and analyzing a large quantum of research details in one place with all the datasets, model architectures, and results, we aim to provide a one-stop solution to beginners and current researchers interested in this field.
READ FULL TEXT