Advancing inverse scattering with surrogate modeling and Bayesian inference for functional inputs

05/02/2023
by   Chih-Li Sung, et al.
0

Inverse scattering aims to infer information about a hidden object by using the received scattered waves and training data collected from forward mathematical models. Recent advances in computing have led to increasing attention towards functional inverse inference, which can reveal more detailed properties of a hidden object. However, rigorous studies on functional inverse, including the reconstruction of the functional input and quantification of uncertainty, remain scarce. Motivated by an inverse scattering problem where the objective is to infer the functional input representing the refractive index of a bounded scatterer, a new Bayesian framework is proposed. It contains a surrogate model that takes into account the functional inputs directly through kernel functions, and a Bayesian procedure that infers functional inputs through the posterior distribution. Furthermore, the proposed Bayesian framework is extended to reconstruct functional inverse by integrating multi-fidelity simulations, including a high-fidelity simulator solved by finite element methods and a low-fidelity simulator called the Born approximation. When compared with existing alternatives developed by finite basis expansion, the proposed method provides more accurate functional recoveries with smaller prediction variations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset