Advancing Topic Segmentation and Outline Generation in Chinese Texts: The Paragraph-level Topic Representation, Corpus, and Benchmark
Topic segmentation and outline generation strive to divide a document into coherent topic sections and generate corresponding subheadings. Such a process unveils the discourse topic structure of a document that benefits quickly grasping and understanding the overall context of the document from a higher level. However, research and applications in this field have been restrained due to the lack of proper paragraph-level topic representations and large-scale, high-quality corpora in Chinese compared to the success achieved in English. Addressing these issues, we introduce a hierarchical paragraph-level topic structure representation with title, subheading, and paragraph that comprehensively models the document discourse topic structure. In addition, we ensure a more holistic representation of topic distribution within the document by using sentences instead of keywords to represent sub-topics. Following this representation, we construct the largest Chinese Paragraph-level Topic Structure corpus (CPTS), four times larger than the previously largest one. We also employ a two-stage man-machine collaborative annotation method to ensure the high quality of the corpus both in form and semantics. Finally, we validate the computability of CPTS on two fundamental tasks (topic segmentation and outline generation) by several strong baselines, and its efficacy has been preliminarily confirmed on the downstream task: discourse parsing. The representation, corpus, and benchmark we established will provide a solid foundation for future studies.
READ FULL TEXT