Adversarial Learning Data Augmentation for Graph Contrastive Learning in Recommendation

02/05/2023
by   Junjie Huang, et al.
0

Recently, Graph Neural Networks (GNNs) achieve remarkable success in Recommendation. To reduce the influence of data sparsity, Graph Contrastive Learning (GCL) is adopted in GNN-based CF methods for enhancing performance. Most GCL methods consist of data augmentation and contrastive loss (e.g., InfoNCE). GCL methods construct the contrastive pairs by hand-crafted graph augmentations and maximize the agreement between different views of the same node compared to that of other nodes, which is known as the InfoMax principle. However, improper data augmentation will hinder the performance of GCL. InfoMin principle, that the good set of views shares minimal information and gives guidelines to design better data augmentation. In this paper, we first propose a new data augmentation (i.e., edge-operating including edge-adding and edge-dropping). Then, guided by InfoMin principle, we propose a novel theoretical guiding contrastive learning framework, named Learnable Data Augmentation for Graph Contrastive Learning (LDA-GCL). Our methods include data augmentation learning and graph contrastive learning, which follow the InfoMin and InfoMax principles, respectively. In implementation, our methods optimize the adversarial loss function to learn data augmentation and effective representations of users and items. Extensive experiments on four public benchmark datasets demonstrate the effectiveness of LDA-GCL.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset