Adversarial Networks and Machine Learning for File Classification

01/27/2023
by   Ken St. Germain, et al.
0

Correctly identifying the type of file under examination is a critical part of a forensic investigation. The file type alone suggests the embedded content, such as a picture, video, manuscript, spreadsheet, etc. In cases where a system owner might desire to keep their files inaccessible or file type concealed, we propose using an adversarially-trained machine learning neural network to determine a file's true type even if the extension or file header is obfuscated to complicate its discovery. Our semi-supervised generative adversarial network (SGAN) achieved 97.6 We also compared our network against a traditional standalone neural network and three other machine learning algorithms. The adversarially-trained network proved to be the most precise file classifier especially in scenarios with few supervised samples available. Our implementation of a file classifier using an SGAN is implemented on GitHub (https://ksaintg.github.io/SGAN-File-Classier).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset