Affinity-based measures of medical diagnostic test accuracy

12/28/2017
by   Miguel de Carvalho, et al.
0

We propose new summary measures of diagnostic test accuracy which can be used as companions to existing diagnostic accuracy measures. Conceptually, our summary measures are tantamount to the so-called Hellinger affinity and we show that they can be regarded as measures of agreement constructed from similar geometrical principles as Pearson correlation. A covariate-specific version of our summary index is developed, which can be used to assess the discrimination performance of a diagnostic test, conditionally on the value of a predictor. Nonparametric Bayes estimators for the proposed indexes are devised, theoretical properties of the corresponding priors are derived, and the performance of our methods is assessed through a simulation study. Data from a prostate cancer diagnosis study are used to illustrate our methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset