AI Model Disgorgement: Methods and Choices
Responsible use of data is an indispensable part of any machine learning (ML) implementation. ML developers must carefully collect and curate their datasets, and document their provenance. They must also make sure to respect intellectual property rights, preserve individual privacy, and use data in an ethical way. Over the past few years, ML models have significantly increased in size and complexity. These models require a very large amount of data and compute capacity to train, to the extent that any defects in the training corpus cannot be trivially remedied by retraining the model from scratch. Despite sophisticated controls on training data and a significant amount of effort dedicated to ensuring that training corpora are properly composed, the sheer volume of data required for the models makes it challenging to manually inspect each datum comprising a training corpus. One potential fix for training corpus data defects is model disgorgement – the elimination of not just the improperly used data, but also the effects of improperly used data on any component of an ML model. Model disgorgement techniques can be used to address a wide range of issues, such as reducing bias or toxicity, increasing fidelity, and ensuring responsible usage of intellectual property. In this paper, we introduce a taxonomy of possible disgorgement methods that are applicable to modern ML systems. In particular, we investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
READ FULL TEXT