AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods

02/19/2021
by   Zheng Shi, et al.
12

We present an adaptive stochastic variance reduced method with an implicit approach for adaptivity. As a variant of SARAH, our method employs the stochastic recursive gradient yet adjusts step-size based on local geometry. We provide convergence guarantees for finite-sum minimization problems and show a faster convergence than SARAH can be achieved if local geometry permits. Furthermore, we propose a practical, fully adaptive variant, which does not require any knowledge of local geometry and any effort of tuning the hyper-parameters. This algorithm implicitly computes step-size and efficiently estimates local Lipschitz smoothness of stochastic functions. The numerical experiments demonstrate the algorithm's strong performance compared to its classical counterparts and other state-of-the-art first-order methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset