ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

12/03/2019
by   Mohit Shridhar, et al.
5

We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. Long composition rollouts with non-reversible state changes are among the phenomena we include to shrink the gap between research benchmarks and real-world applications. ALFRED consists of expert demonstrations in interactive visual environments for 25k natural language directives. These directives contain both high-level goals like "Rinse off a mug and place it in the coffee maker." and low-level language instructions like "Walk to the coffee maker on the right." ALFRED tasks are more complex in terms of sequence length, action space, and language than existing vision-and-language task datasets. We show that a baseline model designed for recent embodied vision-and-language tasks performs poorly on ALFRED, suggesting that there is significant room for developing innovative grounded visual language understanding models with this benchmark.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset