Algebraic compressed sensing

08/30/2021
by   Paul Breiding, et al.
0

We introduce the broad subclass of algebraic compressed sensing problems, where structured signals are modeled either explicitly or implicitly via polynomials. This includes, for instance, low-rank matrix and tensor recovery. We employ powerful techniques from algebraic geometry to study well-posedness of sufficiently general compressed sensing problems, including existence, local recoverability, global uniqueness, and local smoothness. Our main results are summarized in thirteen questions and answers in algebraic compressed sensing. Most of our answers concerning the minimum number of required measurements for existence, recoverability, and uniqueness of algebraic compressed sensing problems are optimal and depend only on the dimension of the model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset