Algorithmic Information Dynamics of Cellular Automata
We illustrate an application of Algorithmic Information Dynamics to Cellular Automata (CA) demonstrating how this digital calculus is able to quantify change in discrete dynamical systems. We demonstrate the sensitivity of the Block Decomposition Method on 1D and 2D CA, including Conway's Game of Life, against measures of statistical nature such as compression (LZW) and Shannon Entropy in two different contexts (1) perturbation analysis and (2) dynamic-state colliding CA. The approach is interesting because it analyses a quintessential object native to software space (CA) in software space itself by using algorithmic information dynamics through a model-driven universal search instead of a traditional statistical approach e.g. LZW compression or Shannon entropy. The colliding example of two state-independent (if not three as one is regulating the collision itself) discrete dynamical systems offers a potential proof of concept for the development of a multivariate version of the AID calculus.
READ FULL TEXT