An Adaptive and Modular Blockchain Enabled Architecture for a Decentralized Metaverse
A metaverse breaks the boundaries of time and space between people, realizing a more realistic virtual experience, improving work efficiency, and creating a new business model. Blockchain, as one of the key supporting technologies for a metaverse design, provides a trusted interactive environment. However, the rich and varied scenes of a metaverse have led to excessive consumption of on-chain resources, raising the threshold for ordinary users to join, thereby losing the human-centered design. Therefore, we propose an adaptive and modular blockchain-enabled architecture for a decentralized metaverse to address these issues. The solution includes an adaptive consensus/ledger protocol based on a modular blockchain, which can effectively adapt to the ever-changing scenarios of the metaverse, reduce resource consumption, and provide a secure and reliable interactive environment. In addition, we propose the concept of Non-Fungible Resource (NFR) to virtualize idle resources. Users can establish a temporary trusted environment and rent others' NFR to meet their computing needs. Finally, we simulate and test our solution based on XuperChain, and the experimental results prove the feasibility of our design.
READ FULL TEXT