An ALE residual distribution scheme for the unsteady Euler equations over triangular grids with local mesh adaptation

04/25/2022
by   Stefano Colombo, et al.
0

This work presents a novel interpolation-free mesh adaptation technique for the Euler equations within the arbitrary Lagrangian Eulerian framework. For the spatial discretization, we consider a residual distribution scheme, which provides a pretty simple way to achieve high order accuracy on unstructured grids. Thanks to a special interpretation of the mesh connectivity changes as a series of fictitious continuous deformations, we can enforce by construction the so-called geometric conservation law, which helps to avoid spurious oscillations while solving the governing equations over dynamic domains. This strategy preserves the numerical properties of the underlying, fixed-connectivity scheme, such as conservativeness and stability, as it avoids an explicit interpolation of the solution between different grids. The proposed approach is validated through the two-dimensional simulations of steady and unsteady flow problems over unstructured grids.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset