An Algorithmic Approach to Entanglement-Assisted Quantum Error-Correcting Codes from the Hermitian Curve
We study entanglement-assisted quantum error-correcting codes (EAQECCs) arising from classical one-point algebraic geometry codes from the Hermitian curve with respect to the Hermitian inner product. Their only unknown parameter is c, the number of required maximally entangled quantum states since the Hermitian dual of an AG code is unknown. In this article, we present an efficient algorithmic approach for computing c for this family of EAQECCs. As a result, this algorithm allows us to provide EAQECCs with excellent parameters over any field size.
READ FULL TEXT